Nanoplasmonics simulations at the basis set limit through completeness-optimized, local numerical basis sets.
نویسندگان
چکیده
We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate that the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.
منابع مشابه
Quantum Chemistry Study & Evaluation of Basis Set Effects on Prediction of Amino Acids Properties:
The potential energy surface of gaseous glycine determined years ago in the ab initio B3LYP/6-311++G** calculations is composed of thirteen stable conformers. We performed the ab initiomolecular orbital calculations as the starting point to carry out a force field and normal coordinatecalculation on the most stable conformer of non-zwitterionic glycine [conformer (I)]. Thecalculations were carr...
متن کاملComputational investigations of nuclear magnetic resonance and magneto-optic properties at the basis-set limit
Theoretical examination of traditional nuclear magnetic resonance (NMR) parameters as well as novel quantities related to magneto-optic phenomena is carried out in this thesis for a collection of organic molecules. Electronic structure methods are employed, and reliable calculations involving large molecules and computationally demanding properties are made feasible through the use of completen...
متن کاملAb initio study of the second virial coefficient protein — protein on the basis of intermolecular potential energy surface
Intermolecular potential energy surface (IPS) for protein — protein has been examined using RHF, DFT-B3LYPand MP2 levels of theory with 6-31G, 6-31G* basis sets. A number of basis sets were used in order to evaluatethe basis set effects, at all three levels of theory, basis sets has significant effects on the calculated potentialenergy curves (including position, depth and width of the potentia...
متن کاملOn the optimization of Gaussian basis sets
A new procedure for the optimization of the exponents, a j , of Gaussian basis functions, Y l (q ,w)re jr 2 , is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk , of the index, j: ln aj5(k50 max...
متن کاملA First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery
First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 142 9 شماره
صفحات -
تاریخ انتشار 2015